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ABSTRACT

The solubilization of three phenolic solutes in micellar solutions and
surfactant—polymer mixtures is studied: 2-monochlorophenol (MCP),
2,4-dichlorophenol (DCP), and 2.4,6-trichlorophenol (TCP). The equili-
brium dialysis (ED) technique is used to determine the solubilization
equilibrium constant as a function of added NaCl concentration. The
added salt enhances the solubilization ability of surfactant micelles, but
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it only slightly affects the solubilization constant of surfactant—polymer
aggregates. The solubilization constant for the surfactant—only systems
is greater than that for the surfactant—polymer systems. In the micellar
solution, the solute with a low water solubility shows a greater solubil-
ization constant than the solute with a higher water solubility; the
solubilization constants increase in the order MCP < DCP < TCP.
However, in the surfactant—polymer mixtures, the solubilization constant
of DCP can exceed that of TCP due to two opposing effects: ion-dipole
interaction, and water solubility or hydrophobicity. Understanding and
quantifying this solubilization phenomenon is crucial to optimization of
the performance of colloid-enhanced ultrafiltration separation processes.

Key Words: Colloid-enhanced ultrafiltration; Solubilization;
Surfactant—polymer interaction; Phenolic solutes.

INTRODUCTION

Colloid-enhanced ultrafiltration (CEUF) is the class of separation
methods which can be used to remove dissolved organic solutes and/or
inorganic ionic species from water."' ~'®! In micellar-enhanced ultrafiltration
(MEUF), a micellar solution is added to a contaminated feed solution.
Polyelectrolyte micellar-enhanced ultrafiltration (PE-MEUF) is a modified
MEUF technique where a surfactant—polymer mixture is used as the colloid
solution. Organic solutes solubilize in the micelles or surfactant—polymer
complexes and charged solutes (e.g., heavy metal) can electrostatically bind
to these colloids. This solution is then passed through a membrane, which
has pores small enough to block the passage of micelles or surfactant—
polymer complexes, removing the surfactant aggregates and solubilized or
bound solutes. Chlorinated phenolics are important pollutants in wastewater
from the pulp and paper industry,”'”! so their removal is investigated in this
study.

Micelles are surfactant aggregates with the hydrophobic group of the sur-
factant molecules forming an oil-like interior and the hydrophilic part coating
the surface of the micelle.""® Most of surfactants studied for use in MEUF are
roughly spherical; however, surfactant configurations depend on such factors
as surfactant concentration and salinity. For example, rod-like micelles for
cetylpyridinium chloride (CPC) can occur at 0.3M CPC.[' Aqueous
polymer-surfactant mixtures are of much interest from both fundamental
and technological viewpoints. They are encountered in several industrial
applications such as pharmaceuticals, personal care product formulations,
enhanced oil recovery, and detergency. Surfactant binding to polymers in
aqueous solution has been investigated extensively.?°=** The overall
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picture for interaction in surfactant—polymer systems is that when the surfac-
tant concentration exceeds a critical aggregation concentration (cac), surfac-
tant bound to polymer begins to form micelle-like aggregates. Increasing
surfactant concentration leads to increasing surfactant—polymer binding,
until the polymer becomes saturated. This occurs at a surfactant concentration
which is called c,. Free micelles do not appear until the unbound surfactant
concentration reaches the CMC of the surfactant.*”’

In the presence of polymer, the surfactant is induced to form a micelle-
like aggregate with a hydrophobic region in which solubilized organic can
reside. The binding of ionic surfactants to polymer is a cooperative process
due to strong electrostatic and hydrophobic interactions. As a result,
forming micelle-like organized structures occurs even at concentrations
more than 1 order of magnitude lower than the CMC of the surfactant.?*~3"]
The surfactant—polymer complex has been described as “micelles on a string”
or “beads on a necklace” in which the polymer chain connects micelle-like
surfactant aggregates by wrapping around them.?'*2%31 A few studies
have been done to compare the solubilization ability of surfactant micelles
and surfactant—polymer complexes,!'>!'®*"33* " primarily for phenolic
solutes. It was found that ordinary micelles can solubilize an organic solute
more efficiently than the surfactant—polymer complexes. This behavior may
be attributed to a reduction in absolute value of the electrical potential at
the surface of surfactant aggregates due to neutralization by the oppositely
charged polymer.

The total amount of solubilization in different surfactant—polymer
systems have been measured over the past few decades.!'>'®*33% Tkeda
and Maruyama defined the (macroscopic) solubilization power as the
number of molecules solubilized per molecule of micellized surfactant.*®
The (microscopic) solubilization capacity is defined as the average number
of molecules solubilized in a single micelle at saturation. However, we use
the more commonly utilized solubilization constant (K) which is expressed
as mole fraction of solubilized solute into micelles (X,) divided by unsolubi-
lized solute concentration (c).!'>163%34 Solubilization in micelles has been
widely studied®” whereas solubilization into surfactant—polymer complexes
has received much less attention. In surfactant—polymer complexes, for
surfactant concentrations between cac and c,, all solubilization occurs in
polymer-bound aggregates, while at concentrations where the unbound surfac-
tant concentration reaches the CMC, both polymer-bound aggregates and free
micelles participate in solubilization.?”!

Organic solutes can solubilize at different locations in the micelle.
Polar solutes solubilize at the micellar surface or the palisade region
whereas aliphatic hydrocarbons, such as hexane, solubilize primarily within
the hydrocarbon core region of the micelles.***!! Because chlorine atoms

[40]
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are hydrophobic, for chlorinated phenols, the hydroxyl groups are located
next to the cationic surfactant head groups due to ion-dipole interaction
while the benzene ring is inserted into the hydrophobic interior of the
micelles.*”! The solubilization ability of surfactant micelles and surfactant—
polymer aggregates greatly depends on the solute characteristics such as
hydrophobicity, water solubility and polarity. Ionizable solutes with a
higher acidity (lower dissociation constant or pK,) and lower water solubility
can be solubilized more effectively than solutes with a low acidity and high
water solubility, primarily with cationic surfactants!'>3440:42:43],

It has been shown that the concentration of solute in the permeate
(solution passing through the membrane) is approximately that expected if
the system were at equilibrium.”>*~°! Therefore, equilibrium solubilization
measurements obtained from semiequilibrium dialysis or SED**~**! can be
used to determine the process efficiency. Dialysis methods have been used
to measure solubilization of organic solutes in surfactant micelles and surfac-
tant—polymer mixtures.!'> In dialysis experiments with a surfactant—only
system, the surfactant concentration in the permeate generally increases to
the same concentration as the monomer in the retentate in about 18 hours.
Then, the permeate surfactant concentration slowly increases as micelles
form in the permeate. Because the permeate micelles could solubilize the
solute, the permeate solute concentration is greater than the unsolubilized
concentration in the retentate. Therefore, either the equilibration time must
be chosen to be short enough so that an insignificant concentration of micelles
is formed (although long enough to permit the unsolubilized solute to reach
equilibrium), or correction factors need to be applied to account for micellar
solubilization in the permeate. As a result, the dialysis experiments in MEUF,
where no polymer is present, are then called “semiequilibrium dialysis or
SED” experiments. However, in polymer-surfactant systems, the surfactant
concentration in the permeate is lower than the CMC of the surfactant
under the conditions studied,* so there are no micelle. Analysis of the
permeate shows that the polymer concentration in the permeate is less than
1% of that in the initial retentate; therefore, the solubilization of the solute
by the surfactant—polymer aggregates is insignificant due to the small concen-
trations of surfactant and polymer. From these reasons, the dialysis exper-
iments in PE-MEUF are called equilibrium dialysis (ED). As seen in
previous work,''>! the concentration of the solute present in the permeate is
much lower than that in the retentate; therefore, the presence of micelles in
the permeate does not significantly influence the measured solubilization
constant.

In surfactant—polymer systems, two driving forces may influence the
solubilization constant of neutral species solutes that have high hydrophobi-
city or low water solubility such as dichlorophenol (DCP) and trichlorophenol
(TCP): ion-dipole interaction and hydrophobicity or water solubility. It was
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found that the ion-dipole interaction is dominant at low solute loading. There-
fore, the surfactant—polymer aggregates can solubilize DCP more strongly
than TCP'"?! due to the greater dipole moment of DCP than TCP.**! At
high solute concentration, the water solubility of solutes plays a more import-
ant role than the ion-dipole interaction; thus TCP has a higher solubilization
constant than DCP.['”!

For ionizable polar organic solutes such as chlorophenols; pH influences
solute charge. When the pH is much higher than the apparent pK, of the solute,
the phenolate anion predominantly exists in solution. It was found that the
partition coefficient of the phenolate anion in a cationic surfactant micelle is
higher than that of the neutral species because the interaction between the
cationic surfactant head groups and the oppositely charged solute enhances
the partition coefficients'*®~*°!. In contrast, the solubilization constant of the
neutral species in surfactant—polymer aggregates is higher than that of the
phenolate anion.'**!

The effect of added simple salt on micellar growth has been investigated
by several research groups.'?°~%3! The large impact of salt concentration on
micellar size is commonly known; the micellar size increases as salt concen-
tration increases. It was also found that the addition of salt increases the solu-
bilizing power of surfactants,>®>"! increases the surfactant aggregation
number, and reduces the CMC.?"!" In surfactant—polymer complexes, the
added salt generally affects the surfactant binding to the polymer. An increase
in the ionic strength of the solution shifts the onset of binding toward higher
free surfactant concentrations and decreases the amount of bound surfac-
tant.*”) These observations can be related to the screening influence of the
simple salt, which acts to diminish the electrostatic interactions between sur-
factant cations and polyanions.*"?*! Kim et al. found that at a given ionic
strength, the aggregation number of a polymer-bound aggregate is approxi-
mately 50-60% smaller than that of a free micelle, while its solubilization
ability is within approximately 20% of a free micelle.'*”)

To put this third paper in a series of five papers in perspective, in Part I,
we compared the effectiveness of MEUF and PE-MEUF systems.'>! The
effect of pH on solubilization of TCP was studied in Part IL™"! while
the effect of added salt on solubilization of MCP (2-monochlorophenol),
DCP, and TCP is discussed in this paper, Part III, in both surfactant micelles
and surfactant—polymer complexes. In Part IV, the effect of added salt on
surfactant leakage in MEUF and PE-MEUF is discussed.'**! In Part V, the
ability of PE-MEUF to simultaneously remove DCP and magnesium from
water is demonstlrated,[5 8 and the flux behavior of PE-MEUF is shown as a
function of salinity in a stirred cell ultrafiltration device. This series of
papers allows prediction of the separation efficiency of both MEUF and
PE-MEUF for three chlorinated phenolics, permitting comparison of the
efficiency of the two techniques, and optimization of the separation processes
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for this paper industry application. Insight into the physical chemistry of solu-
bilization into surfactant—polymer complexes is also gained, a phenomena
about which little is published and compared to the better-known solubil-
ization into micelles.

EXPERIMENTAL

A detailed description of the materials and methods used here is given in
the first part in this series."'>! Briefly, the surfactant and the polymer used in
this work were cetylpyridinium chloride or CPC and sodium poly(styrenesul-
fonate) or PSS. The repeating unit of the polymer is CH,CH(C¢H4)SO;Na.
Organic solutes with various degrees of chlorination studied here are
2-monochlorophenol (MCP), 2.4-dichlorophenol (DCP), and 2,4,6-trichloro-
phenol (TCP). Sodium chloride (certified A.C.S.) from Fisher Scientific
(Fair Lawn, NJ) is used as an added salt.

For the semiequilibrium dialysis experiments, in brief, 10,000 Da molecu-
lar weight cut-off (MWCO) regenerated cellulose membranes were soaked
overnight in deionized water prior to mounting them between two compart-
ments. A known volume of a solution containing an organic solute and CPC
or CPC-PSS mixture in the presence of salt was placed in the retentate
compartment. A salt solution at a concentration identical to the salt concen-
tration in the retentate was placed in the permeate compartment. The cells
reached equilibrium within 24 hr at 25°C + 0.1°C. Concentrations of the
chlorophenols and CPC in the permeate were determined with a Hewlett—
Packard HP 8452A diode array spectrometer. The concentrations of the
chlorophenols and CPC remaining in the retentate at equilibrium were inferred
by subtracting the loss of the species into permeate from the feed concen-
tration using the analytical concentrations of these species in the permeate
and volume changes due to osmotic pressure effects.

RESULTS AND DISCUSSION
Effect of Added Salt on Solubilization Constant

The solubilization equilibrium constant (K,) of a solute A in CPC
micelles or CPC-PSS aggregates is defined as:

N
e
-G+ Ce

Ka (1)

Xa 2
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where c, is the concentration of an unsolubilized organic solute, X, is the
mole fraction of the solute (MCP, DCP, or TCP) in the surfactant aggregate,
%8 is the concentration of solute in the aggregate, and C¢§c is the concen-
tration of CPC in aggregate form. The values of C3® and CZ are obtained
from the material balance equations

agg __

CA = CA,tol — CA (3)
agg

CCPC — CCPC,tolal - CCPC,monomer (4)

where Ca o 15 the total concentration of the solute in the retentate, c, is the
unsolubilized solute concentration in the retentate (which is essentially the
concentration of solute in the permeate compartment), Ccpc o 1S the total
concentration of surfactant in the retentate, and Ccpc monomer 1S the concen-
tration of monomeric surfactant in the retentate.

Most solubilization experiments were done without pH adjustment unless
it is mentioned otherwise (i.e., Figs. 3 and 5); though the pH of the initial and
final retentate solutions was recorded also, as shown in Part II of this series.[ ]
This lack of exact control of final pH was dictated by degradation of CPC
when base is added to the solution to control pH. Some experiments were
carried out at pH 3 to make a comparison of the solubilization constants of
TCP between two different systems, one of which is the system containing
a mixture of neutral species and charged species (system without pH adjust-
ment) and the other is the system predominantly containing only neutral
species (system at pH 3) except the micellar system in the absence of salt
which contains 11% phenolate anion."*”!

As shown in Figs. 1-6, the solubilization equilibrium constants (K,)
obtained by SED experiments for MCP, DCP, and TCP are plotted as a func-
tion of intramicellar mole fraction (X,) of the solutes in CPC micelles and
CPC-PSS complexes at different salinities. The pH range in the final retentate
solutions is shown in parenthesis in the figures. In Figs. 1 and 2, it can be seen
that the solubilization constants for MCP and DCP in CPC micelles in the
presence of salt is higher than that in the absence of salt; the results for
TCP are similar to the results for MCP and DCP. This behavior is also seen
in the system at pH 3 for TCP (Fig. 3). In the presence of 50 mM PSS, the
added salt does not significantly affect the solubilization ability of CPC-PSS
complexes for MCP, as shown in Fig. 4, and for DCP (not shown here).
However, Ktcp increases with increasing salinity for the system without pH
adjustment in Fig. 5 and for the system at pH 3 in Fig. 6. The detailed
results that are not shown in this paper are available in a dissertation.”>”’

It is well known that micellar growth occurs as the electrolyte concen-
tration increases.>>~>> This is attributed to the fact that the initial added
salt reduces the electrostatic repulsion between surfactant head groups, and
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Figure 1. Solubilization equilibrium constant of MCP vs. mole fraction of MCP at
different NaCl concentrations in CPC micelles. Initial [CPC] is 25 mM.

therefore increases the micellar size and the surfactant aggregation number.
The increase in the micellar size could cause the increase in the solubilization
ability of the micelle as salt concentration increases, as seen in Figs. 1 and 2.
However, the further addition of salt may not significantly change the micellar

5000
3 ¢ [NaCI] =0 M (pH=5.1 - 6.3)
4000 4 [NaCI]=0.05 M (pH=5.1 - 6.3)
X [NaCI]=0.1 M (pH=5.3 - 6.4)
3 3000
& i ¥
= ¥
X 2000 : ¥
. *
1000 * 4
* ¢ L4
0
0 0.1 02 03 0.4 0.5
Xbce

Figure 2. Solubilization equilibrium constant of DCP vs. mole fraction of DCP at
different NaCl concentrations in CPC micelles. Initial [CPC] is 25 mM.
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Solubilization equilibrium constant of TCP vs. mole fraction of TCP at

different NaCl concentrations in CPC micelles at pH of 3. Initial [CPC] is 25 mM.

size, resulting in only a slight or negligible increase in the solubilization
constant when the salt concentration is increased from 0.05M to 0.1 M,
primarily for DCP. The increase in the solubilization constant also may be
due, in part, to a salting-out effect which causes a reduction in water solubility

of the organic solutes in the aqueous solution,

K, L/mol

300

200

100

1531 and therefore enhances the

¢ [NaCl]=0M (pH=6.6 - 6.7)
4 [NaCl]=0.05 M (pH=6.5 - 6.6)
x [NaCl] = 0.1 M (pH=6.3 - 7.0)

&
.*

0.1 0.2 0.3 0.4
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Figure 4. Solubilization equilibrium constant of MCP vs. mole fraction of MCP at differ-
ent NaCl concentrations in CPC-PSS complexes. Initial [CPC] to [PSS] is 25 to 50 mM.
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Figure 5. Solubilization equilibrium constant of TCP vs. mole fraction of TCP at differ-
ent NaCl concentrations in CPC-PSS complexes. Initial [CPC] to [PSS] is 25 to 50 mM.
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Figure 6. Solubilization equilibrium constant of TCP vs. mole fraction of TCP at
different NaCl concentrations in CPC-PSS complexes at pH of 3. [CPC] to [PSS] is

25 to 50 mM.
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solubilization of the solute into the CPC micelle. In addition to the effect of
added salt, a synergistic effect of organic solute on the micellar growth has
been observed.>*!

In the surfactant—polymer mixtures, it is commonly known that the size
and the aggregation number of surfactant—polymer aggregates are smaller
than those of ordinary micelles.**?%¢! Kogej and coworkers reported the
characteristic size of the ordered element (@) of CPC-PSS;P? the a value
is the center-to-center distance between micelles consecutively bound to
the polyion, which comprises one micellar diameter and the thickness of
the polymer chain wrapped around it. They found that the a value is
approximately 35.2-38.0 A which is less than the largest possible extension
of two C;¢ hydrocarbon chains incorporated in a liquid hydrocarbon-like
environment which would be 43.5 A.'®" Hansson and Almgren found that
the aggregation numbers of surfactant—polymer aggregates are not signifi-
cantly affected by the presence of salt.””?! This suggests that the aggregate
size may not be drastically influenced by the added salt, which may explain
that the solubilization ability of the surfactant—polymer aggregates is not
dramatically affected by the added salt for MCP, DCP, and TCP at pH 3.
It should also be noted that there are only negligible concentrations of
charged species present for MCP, DCP and TCP at pH 3. Another possible
reason is that the counterions present in the surfactant—polymer mixtures, at
a relatively higher concentration than in the surfactant solutions, have
already diminished the electrostatic repulsion between surfactant head
groups. Therefore, additional salt may no longer affect the electrostatic
repulsion, and consequently the size or the aggregation number of the surfac-
tant—polymer aggregates. In addition, the polymer-bound micelles are partly
neutralized by the polyanion and have therefore lower charge density than the
corresponding free micelles.

In the surfactant—polymer system, the increase in the solubilization con-
stant for TCP as the salt concentration increases in the system without pH
adjustment, as shown by Fig. 5, is somewhat difficult to understand. We specu-
late that the presence of the phenolate anion could be a reason for such
phenomena. Although the presence of the phenolate species can be negligible,
the values of phenolate anion fraction were obtained at a low solute concen-
tration of 0.2 or 0.3 mM in some cases.*’! Unfortunately, the fraction of the
phenolate anion at solute concentrations greater than 0.3 mM is not measur-
able due to the high absorbance (>1.0) at these higher solute concentrations.
The presence of the phenolate anion, where the fraction can be different at
higher solute concentrations, influences the solubilization of TCP by the sur-
factant—polymer complexes. In the previous work, it was observed a slight
shift of the apparent pK, of TCP in CPC solution as the solute concentration
increases from 0.2 to 0.3 mM." It should be noted that the effect of the
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solute concentration on the apparent pK, in CPC-PSS mixture can not be
measured due to the high absorbance.

Effect of Types of Colloid on Solubilization Constant

Figure 7 shows plots of the solubilization constant versus intramicellar
mole fraction of MCP in CPC and CPC-PSS mixtures containing 0.05M
NaCl, illustrating the effect of the type of colloid. Similar results were
obtained for DCP and TCP and are not shown here.”” It is observed that
the solubilization constant in the micellar solution monotonically decreases
as the solute concentration increases and is higher than the solubilization con-
stant of surfactant—polymer aggregates. This behavior was also seen in a
system without salt.!"”! The increase in polymer concentration from 50 to
75mM does not significantly influence the solubilization constant in the
surfactant—polymer system. Results for the system with 0.1 M NaCl (not
shown) are approximately the same as the system with 0.05 M NaCl.>"!

The solubilization of polar solutes in neutral form generally occurs at
the micellar surface and palisade region with significant ion—dipole

600
¢ No added PSS (pH=5.5 - 6.6)
A [CPC][PSS] = 1/2 (pH = 6.5 - 6.6)
_ x [CPCY/[PSS] = 1/3 (pH = 6.5 - 6.6)
=
b4
£ .
) P
200 E 4
% * * - S
* o *
A
0
0 0.1 0.2 0.3 0.4 0.5
Xwmcr

Figure 7. Solubilization equilibrium constant of MCP vs. mole fraction of MCP in
different types of colloids. Initial [CPC] to [PSS] are 25 to OmM (no added PSS),
25 to 50 mM (mole ratio 1:2), and 25 to 75 mM (mole ratio 1:3). Initial [NaCl] is
0.05 mM.
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interaction.'*>*?! The solubilization behavior has been observed to obey the
Langmuir adsorption isotherm. This suggests that the adsorption initially
occurs at the micellar surface. The adsorption or the solubilization of the
solutes decreases once all active site are occupied as solute concentration
increases as seen in the Fig. 7. This type of behavior was also observed in
previous work.!'3344943] The reduction of the solubilization constant in the
presence of polymer may be attributed to the decrease in the charge density
at the micellar surface due to partial neutralization of the cationic surfac-
tant by the anionic polymer. In addition, as noted previously, the size of
surfactant—polymer aggregate is smaller than the size of the ordinary
micelle. As a result, the volume in the palisade layer is reduced, causing
steric hindrance for penetration of the hydroxyl groups, therefore decreasing
the solubilization constant.

Effect of Types of Solute on Solubilization Constant

The data is replotted in Figs. 8—13 to illustrate the effect of type of solute
on the solubilization constant of the surfactant micelle and the surfactant—
polymer aggregates in the presence of 0.05 and 0.1 M NaCl. In the micellar
solutions at both salt concentrations, the solubilization constant of the
solutes increases in the order MCP < DCP < TCP, as shown in Figs. 8 and
9. In the surfactant—polymer mixtures at S0 mM PSS, the relative order of

8000
+ Monochlorophenol
. 4 Dichlorophenol
6000 * Trichlorophenol
% % X
3 a - ’
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Figure 8. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC micelle. Initial [CPC] is 25 mM. Initial [NaCl] is 0.05 M.
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Figure 9. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC micelle. Initial [CPC] is 25 mM. Initial [NaCl] is 0.1 M.

the solubilization constant of DCP and TCP is reversed at low solute concen-
tration for both salt concentrations, as shown in Figs. 10 and 11. The solubil-
ization of DCP is higher than that of TCP at low solute loading whereas the
opposite trend is observed at high solute loading as seen by the intersection
between the solubilization isotherm for DCP and TCP. In the presence of
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Figure 10. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC/PSS complexes. Initial [CPC] to [PSS] is 25 to 50 mM. Initial [NaCl] is 0.05 M.
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Figure 11. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC/PSS complexes. Initial [CPC] to [PSS] is 25 to 50 mM. Initial [NaCl] is 0.1 M.

50mM PSS, the intersection occurs at a lower solute loading when the salt
concentration is 0.05M NaCl (Fig. 10) than the case for 0.1M NaCl
(Fig. 11). At 75mM PSS, the intersection no longer exists at 0.1 M NaCl
(Figure 13); the solubilization of the solutes at 0.1 M NaCl follows the same
order found in the micellar systems.
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Figure 12. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC /PSS complexes. Initial [CPC] to [PSS] is 25 to 75 mM. Initial [NaCl] is 0.05 M.
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Figure 13. Solubilization equilibrium constant vs. mole fraction for different solutes
in CPC/PSS complexes. Initial [CPC] to [PSS] is 25 to 75 mM. Initial [NaCl] is 0.1 M.

In general, the lower the water solubility, the greater the solubilization
constant because the solute with low water solubility tends to partition
into surfactant micelle more effectively than the solute with high water
solubility. It should be noted that the water solubility increases in the
order TCP < DCP < MCP.!®* As seen in Figs. 8 and 9, the values of K,
for the solutes in the micellar systems are in inverse order compared to
their water solubility.

In the surfactant—polymer systems, the previous study showed that
DCP and TCP were almost completely protonated under the conditions
used here.[**! Therefore, ion-dipole interaction can affect the solubilization
of the neutral solute in the surfactant aggregate. The dipole moments (w) of
MCP, DCP, and TCP are 2.93, 2.25, and 1.08 D, respectively,*> which is
the same as the order of water solubility and opposite to the order of the hydro-
phobicity of the solutes (e.g., TCP shows the greatest hydrophobicity and the
lowest water solubility). As a result, the two opposing effects of
ion—dipole interaction and water solubility for a given solute are present as
also seen in previous work!'>! for the system without salt. As salt concen-
tration increases from 0.05 to 0.1 M, the effect of ion-dipole interaction on
the solubilization constant may be diminished; therefore the intersection
between the solubilization isotherm of DCP and TCP occurs at a lower
solute concentration. Likewise, at the highest salt concentration (0.1 M),
the ion-dipole interaction may be reduced as polymer concentration increases
from 50 to 75 mM, resulting in the disappearance of the intersection point
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in Fig. 13 as compared to Fig. 11. In the presence of 75mM PSS and
0.1 M NaCl, it is plausible that solubilization constant is predominantly
affected by the water solubility or hydrophobicity (the ion—dipole interaction
effect is diminished; therefore the order of the solubilization constants is
the same as the order observed in the micellar solution. It should be noted
that the solubilization of MCP is smallest (Figs. 8—13) over an entire range
of concentration because of its lower hydrophobicity or higher
water solubility, compared to DCP and TCP, although its dipole moment is
the greatest.
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